daf-2 modulates regeneration of mechanosensory neurons

Zehra C Abay¹, Michelle Yu-Ying Wong¹, and Brent Neumann¹*

¹Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia

*Correspondence to: brent.neumann@monash.edu

Description:
The *daf-2* gene encodes an insulin-like growth factor/IGF-1 receptor that regulates *C. elegans* embryonic and larval development. It has previously been shown that DAF-2 inhibits neurite regeneration of the GABAergic motor neurons and PVD sensory neurons in an age-dependent fashion [1, 2]. Following injury, the posterior lateral microtubule (PLM) neurons are capable of regenerating through axonal fusion, a highly efficient regrowth mechanism in which separated fragments fuse back together [3-6]. We previously established that a critical event for axonal fusion to occur is the exposure of injury-induced phosphatidylserine (PS) ‘save-me’ signals [5]. The level of PS exposure increases with advancing age [3]. To determine if *daf-2* is involved in this age-dependent modulation of PS exposure, we visualised and quantified the level of PS exposed after PLM axotomy using a secreted, tagged version of Annexin V [5, 7]. Mutation of *daf-2* had no effect on PS exposure 1 h post-axotomy, with no significant differences observed on either the distal or proximal axon segments (Table 1).

Table 1. Quantification of the relative level of PS exposed 1 h post-axotomy.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>PS exposed on distal axon (relative to pre-axotomy)</th>
<th>PS exposed on proximal axon (relative to pre-axotomy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>1.53 ± 0.105</td>
<td>1.44 ± 0.0855</td>
</tr>
<tr>
<td>daf-2(e1370)</td>
<td>1.51 ± 0.167</td>
<td>1.57 ± 0.166</td>
</tr>
</tbody>
</table>

Reagents
One-day-old adult hermaphrodites were used for all experiments, and were grown under standard conditions at 20°C. The BXN301 [*daf-2*(e1370); *smIs95(Phsps-16.2::sAnxV::mRFP); *zdIs5(Pmec-4::GFP)*] strain was used along with the CU4204 [*smIs95(Phsps-16.2::sAnxV::mRFP); *zdIs5(Pmec-4::GFP)*] control strain. The *daf-2*(e1370) allele has been considered temperature sensitive for the dauer phenotype, but not for the long-lived phenotype. At 20°C, *daf-2*(e1370) animals display a greater than 2-fold increase in lifespan compared to the wild-type [8]. Laser axotomy, microscopy and quantification of data was performed as previously described [3].

References

Funding:
This work was supported by National Health and Medical Research Council (NHMRC) Project Grant 1101974.

Acknowledgements
We thank Ding Xue for sharing strains.

Reviewed by Rachid El Bejjani
Received 11/10/2017, **Accepted** 11/26/2017. **Available** starting WormBase release WS264, **Published Online** 12/01/2017.

Copyright: © 2017. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Abay, ZC; Yu-Ying Wong, M; Neumann B. (2017): daf-2 modulates regeneration of mechanosensory neurons II. Micropublication: biology. Dataset. https://doi.org/10.17912/W2SM1T